Safety management in European LRT systems:

some tools for collecting and using accident data

Dominique BERTRAND

Senior adviser CEREMA,

Technical Division for Territorial Development and Urban planning

Lyon, France

Laetitia FONTAINE

Chief STRMTG,

North Eastern Control Office

Besançon, France

Key Presentation Take Aways

- The TU1103 "COST" Action
- Accidents databases and other sources
- Ideal Accident Report
- Indicators, an output of data
- Identification of hotposts

The TU1103 "COST" Action

"Operation & safety of tramways in interaction with public space"

A networking action funded by European Union

15 countries, 35 entities, about 50 people:

- Regulation offices,
- Public Transport Authorities,
- Operators,
- Research & study bodies

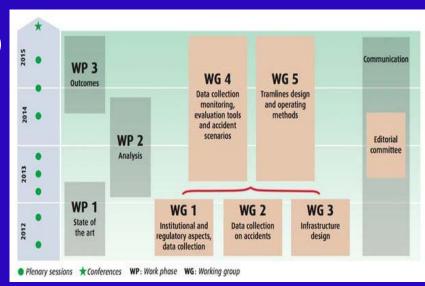
The aim...

- => to share experiences and information,
- => to identify key recommendation for safety improvement

on a topic reduced to interaction between tramway & public space

The TU1103 "COST" Action

Chair:


Laetitia FONTAINE (STRMTG, France)

Organisation:

3 steps + communication tasks for 4 years (Sept 2011 -2015)

Deliverables:

1 brochure,1 full report,appendicies

http://www.tram-urban-safety.eu

After the *final conference* in **Frankfurt**, the Action is over! Then, we have in mind to try going on through a *light* networking process: to set up a "Urban Tram Forum"!?...

Accidents databases and other sources

Advantages of a database at a wide scale (nationwide)

- a better understanding of things through
- a broader analysis on a larger scope
- valuable statistics (based on a wider sample)
- a standardization of data
- an easier access to data and results

Challenges to implement a nationwide database

- to agree on the way to build, maintain and use it
- to set up a shared nomenclature and uniquedefinitions
- to use a common codification of accidents (and location)
- to collect all required data, in the agreed way and deadline

Till now, no other sophisticated and exhaustive tool than the French "tramway accidents database" managed by STRMTG

Accidents databases and other sources

Anyway, some key points:

- a tool made for operators, with (by) operators
- a centralized management, with sufficient means
- an anonymous recording process
- a training process for feeders & users
- failures' detection fostered by an intensive use

Besides accidents, other crucial information sources:

- Traffic handling information
- CCTV devices on tracks & in front of streetcars
- Automated events recorders ("black boxes")

Helpful to understand accidents and nearmisses scenarii and emergency brake analysis

What could be an Ideal Accident Report ?!

The aim (beyond feeding a database): to set up the collection of information to

 allow later analysis and better understanding of accident scenarii

- use lessons from it for accident prevention
 - layout modifications
- operation ways changes drivers training
 - safety campaigns

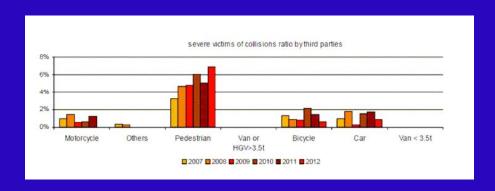
What could be an Ideal Accident Report?!

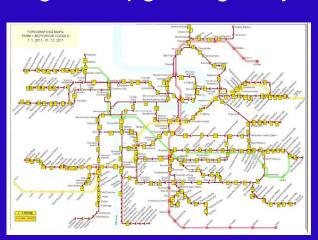
Contents:

- Location of event (place, time, layout types)
- Actors (involved people & vehicles, witnesses)
- Description (how?...)
- Context & circumstances
- Consequences (personal, material, operational)
- (Immediate) measures

Some key points:

- missing information would be hard to get later
- the driver is the core actor (needs help & training)
- usable information = detailed but clear!





Indicators, an output of data

a useful tool for tramway safety...

- to give general information
- to show trends in terms of safety
- to identify and rank the issues
- to assess the strategy and implemented actions
- to improve the knowledge for planning and upgrading of systems

Accidents involving pedestrians

8,94

Indicators, an output of data

raw data or calculated figures to measure a level of safety

(i.e. number of events, of casualties)

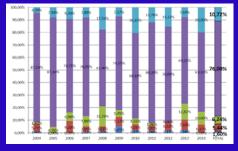
(i.e. Percentage of collisions per third parties, ratio per kilometers run)...

Behind this, the general idea of comparing things...

- how are things evolving in time?
- what is the safety level of one system, compared to an external reference?
- what are the main safety issues on a network?
- how, when and where do most frequent accidents occur.

However, to be (properly) compared, things need to be comparable!

- homogeneous data and way of calculation
- similar contexts and equal other parameters


Indicators, an output of data

Different kinds of indicators for tram safety, based on:

- the field they apply to
- the nature of information used ...

- global indicators
- geographical indicators
- typological indicators

some other indicators are linked to safety, when concerning:

degradation of level of service social or economic costs

due to impact of accidents

Use and limits of indicators

- Making comparisons between tram networks, tramlines or layouts is not often relevant...
- One should rather try to follow things in time on each network!

In such a comparing process, indicators should not be used in order to ...

- rank the networks or the tramlines,
- understand why accidents occur,
- choose signalling tools or layout design

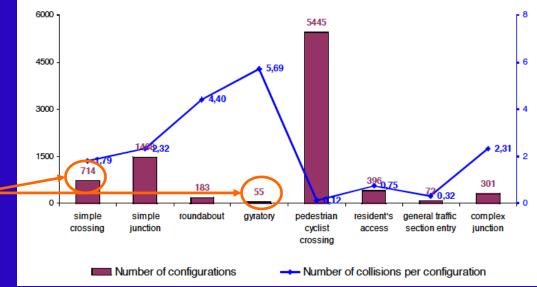
Indicators are a useful tools in a quantitative approach to get general conlusions and help to identify main core issues

They are complementary with detailed and qualitative assessments of accidents

Use and limits of indicators

Main limitations for indicators regarding tramway safety

- availability of data required to produce safety indicators
 - ⇒ main source is drivers, but data collection is not their 1st worry after an accident
- sufficient numbers of figures to make valuable statistics
 - ⇒ fortunately not so mant tramway accidents, and very diverse situations
- existing differences about definitions in safety data
 - ⇒ e.g. "injured" people, "passenger"
- differences of contexts of accidents and conditions of operation
 - ⇒ frequencies, traffic level, layouts, road regulation and signalling, behaviours
- unavailability of additional but essential data to objectivize comparisons
 - ⇒ data regarding car traffic in junctions, speed, ...


Use and limits of indicators

Pay attention while considering raw data:

- no information on
 - size of networks,
 - km run
 - number of junctions
- various periods (years) of operation

	Operation period	Number of accidents
Network A	2010-2012	6
Network B	1995-2012	161
Network C	1995-2010	107

Have in mind the size of sample on witch the indicator is based!

Most relevant indicators

- Number of accidents
- 2. Number of fatalities, injured persons
- 3. Accidents per km per year

Global indicators

geographic indicators

- 4. Number of accidents by location
- 5. Distribution of accidents by type of location (relative)
- 6. Distribution of casualties (fatalities, injured) by type of location (rel.)
- 7. Number of accidents per number of type of location

typological indicators

- 8. Distribution of accidents by third parties (relative)
- 9. Distribution of casualties by third parties (relative)

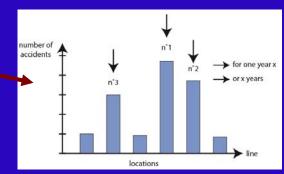
Socio-economic ind.

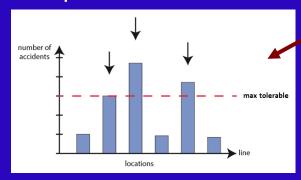
10. Number of lost km / number of planned km

Identification of hotspots

What is a *hotspot*?

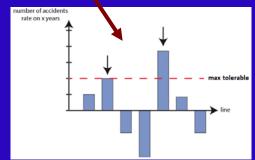
- Operators' definitions:
 - greatest number of events (accidents) in past year (Warsaw)
 - accident locations in past X years (Lisbon, Dublin, Barcelona, Manchester) - X : 3 to 10 according countries
 - three similar injury accidents in last 3 years or 5 damage only accidents in past 5 years (Vienna)
 - emergency brake application frequency (Dublin)
- Other definitions:
 - numbers of near missed accidents (Dublin)
 - passenger accidents due to emergency braking (Le Mans)
 - minor collisions with vehicles (various) / pedestrians




Identification of hotspots

With the number of accidents along a line (or on a network)

rank locations and keep "first" ones


keep locations exceeding a fixed limit

 look at trends of accidents occurrence and choose highest increase

Beyond accidents data, important resources are

- tram drivers
- line managers
- instructors

Identification of hotspots

the first step for in-depth post-analysis, leading to proposals for improvements to reduce risks, e.g.

- new traffic signals / modifications to existing traffic signals
- carriageway markings
- improved sightlines
- prohibit turning movements
- tram driver training
- safety campaigns

Post-analysis and hotspots

Example of before / after situation

Manchester: Poor sightlines at junction of cars with tramway

=> better signs erected

Any question ?...

Thank you for listening

<u>dominique.bertrand@cerema.fr</u> <u>laetitia.fontaine@developpement-durable.gouv.fr</u>

