

Evaluation of an occupancy sensor at the Lançon-de-Provence toll gate

Alexis Bacelar, Frédéric Aliaga, Cristina Buraga*, Didier Goudergues (Cerema France) Nadège Marec, Amir Nakib, Richard Bertoli (Cyclope.ai)

Session TP 2 Adaptive mobility technology 1 16th ITS European Congress, Seville, Spain – 19-21 May 2025

ORGANISED BY:

IN PARTNERSHIP WITH:

HOSTED BY:

Context and Objectives

- HOV (High Occupancy Vehicle) lanes promote sustainable mobility
- French laws (TECV, LOM) support carpool lane deployment and enforcement

- Ensuring compliance with HOV rules requires reliable occupancy detection
- **➢Objective: Evaluate the performance and limitations of Cyclope.ai's sensor in real conditions**

Methodology

Site: Lançon-de-Provence toll gate ≈ 50,000 vehicles/day

- Methodology on 2 phases:
 - Phase I: 210 vehicles (calibration)
 - Phase II: 1213 vehicles (evaluation)

- Data collected:
 - Reference: sensor outputs vs. human-reviewed images
 - Contextual: weather, vehicle types, visibility
- > Key indicators: Detection Rate (TDE), Visibility Rate (TVI), True/False Positive Rates

Main Results

• Detection Rate (TDE): 97.6%

Visibility Rate (TVI): 87%

• HOV2+:

- True Positives: 98.8%

- False Positives: 3.7%

> Reliable performance for semi-automated enforcement

Identified Limitations

HOV3+: Lower performance, higher uncertainty

Light conditions (intense sunlight): image saturation errors

Vehicle features: Tinted windows, objects obstructing view

Occasional vehicle classification issues

Comparison with Other Systems

- Cyclope.ai sensor ranks among the first top 3 evaluated systems
- Strong image clarity even with small vehicle windows

Outperforms others in most evaluation scenarios

	TVI	VP	FP	TDE	SCORE
	83,16 %	34,91 %	32,07 %	79,94 %	15,16 %
	83,96 %	91,29 %	11,48 %	95,64 %	73,92 %
	88,71 %	92,86 %	6,09 %	94,99 %	78,68 %
	80,00 %	95,10 %	7,72 %	95,00 %	79,20 %
	87,12 %	98,00 %	2,19 %	93,77 %	84,29 %
Cyclope.ai	86,97 %	98,76 %	3,66 %	97,58 %	90,60 %
	85,45 %	97,14 %	2,56 %	98,27 %	91,40 %

Improvement and Future Prospects

- Algorithm enhancements:
 - Enrich training sets (e.g. inclined or hidden passengers)
 - Add contextual filters (e.g. tinted glass detection)
- Optimize flash/camera positioning for better angles
- Performance gains now require significant effort (asymptotic returns)

Conclusions

Excellent performance for HOV2+ occupancy detection

• Limitations under complex conditions (HOV3+, sunlight)

Cyclope.ai shows strong potential for broader deployment

Further real-world integrations are foreseen

Cristina Buraga

CEREMA (France)

Contact email: alexis.bacelar@cerema.fr, frederic.aliaga@cerema.fr

www.Cerema.fr

itseuropeancongress.com

ORGANISED BY:

IN PARTNERSHIP WITH:

HOSTED BY:

